Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea
نویسندگان
چکیده
Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA) version 6 (TMPAv6) and version 7 (TMPAv7), the global satellite mapping of precipitation (GSMaP), and the climate prediction center (CPC) morphing technique (CMORPH)) were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intraand inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative) biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM) mission.
منابع مشابه
Hydrological Assessment of Daily Satellite Precipitation Products over a Basin in Iran
In order to measure precipitation as the main variable for estimating the runoff and designing hydraulic structures, the satellite algorithm products that have the proper spatial and temporal coverage, can be used. In this study, at first, the daily streamflow simulation of Sarough-Cahy River from the Zarinehroud basin was conducted through the artificial neural network (ANN) and ground data of...
متن کاملImprovement of Multi-Satellite Real-Time Precipitation Products for Ensemble Streamflow Simulation in a Middle Latitude Basin in South China
The real-time availability of several satellite-based precipitation products has recently provided hydrologists with an unprecedented opportunity to improve current hydrologic prediction capability for vast river basins, particularly for ungauged regions. However, the accuracy of real-time satellite precipitation data remains uncertain. This study aims to use three widely used real-time satelli...
متن کاملAssessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar
Satellite precipitation products from the Global Precipitation Measurement (GPM) mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM) are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG) final run and the TRMM Multi-sa...
متن کاملEvaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan
Multi-sensor precipitation datasets including two products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and estimates from Climate Prediction Center Morphing Technique (CMORPH) product were quantitatively evaluated to study the monsoon variability over Pakistan. Several statistical and graphical techniques are applied to illustrate the noncon...
متن کاملComprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method
0022-1694/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.jhydrol.2012.05.055 ⇑ Corresponding author. Tel.: +86 25 83787480. E-mail address: [email protected] (L. Ren). This study first focuses on comprehensive evaluating three widely used satellite precipitation products (TMPA 3B42V6, TMPA 3B42RT, and CMORPH) with a dense rain gauge network in the Mishui basin (9972 km) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016